Essential curves in handlebodies and topological contractions
Autor: | V. Z. Grines, Francois Laudenbach |
---|---|
Přispěvatelé: | department of mathematics, N. Novgorod State University, N. Novgorod State University, Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN) |
Jazyk: | angličtina |
Rok vydání: | 2008 |
Předmět: |
010102 general mathematics
Geometric Topology (math.GT) compression disk Topology 01 natural sciences 37D15 Mathematics::Geometric Topology MSC: 57M25 37D15 57M25 37D15 Heegaard splitting Mathematics - Geometric Topology North-South diffeomorphism Compact space [MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] 57M25 FOS: Mathematics Geometry and Topology 0101 mathematics Handlebody Mathematics |
Zdroj: | Geometry and Topology Geometry and Topology, Mathematical Sciences Publishers, 2008, 12, pp.981-986 Geom. Topol. 12, no. 2 (2008), 981-985 |
ISSN: | 1465-3060 1364-0380 |
Popis: | International audience; If $X$ is a compact set, a {\it topological contraction} is a self-embedding $f$ such that the intersection of the successive images $f^k(X)$, $k>0$, consists of one point. In dimension 3, we prove that there are smooth topological contractions of the handlebodies of genus $\geq 2$ whose image is essential. Our proof is based on an easy criterion for a simple curve to be essential in a handlebody. |
Databáze: | OpenAIRE |
Externí odkaz: |