Essential curves in handlebodies and topological contractions

Autor: V. Z. Grines, Francois Laudenbach
Přispěvatelé: department of mathematics, N. Novgorod State University, N. Novgorod State University, Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)
Jazyk: angličtina
Rok vydání: 2008
Předmět:
Zdroj: Geometry and Topology
Geometry and Topology, Mathematical Sciences Publishers, 2008, 12, pp.981-986
Geom. Topol. 12, no. 2 (2008), 981-985
ISSN: 1465-3060
1364-0380
Popis: International audience; If $X$ is a compact set, a {\it topological contraction} is a self-embedding $f$ such that the intersection of the successive images $f^k(X)$, $k>0$, consists of one point. In dimension 3, we prove that there are smooth topological contractions of the handlebodies of genus $\geq 2$ whose image is essential. Our proof is based on an easy criterion for a simple curve to be essential in a handlebody.
Databáze: OpenAIRE