Convergence of the Arnoldi process when applied to the Picard-Lindelöf iteration operator
Autor: | Saara Hyvönen |
---|---|
Rok vydání: | 1997 |
Předmět: |
Iterative method
Applied Mathematics Spectrum (functional analysis) Generalized minimal residual method Picard-Lindelöf iteration Arnoldi iteration Computational Mathematics Arnoldi method Operator (computer programming) Power iteration Convergence (routing) Calculus Applied mathematics Symbolic convergence theory Mathematics |
Zdroj: | Journal of Computational and Applied Mathematics. 87(2):303-320 |
ISSN: | 0377-0427 |
DOI: | 10.1016/s0377-0427(97)00195-7 |
Popis: | In this paper the iteration operator corresponding to the Picard-Lindelöf iteration is considered as a model case in order to investigate the convergence theory of the Arnoldi process. We ask whether it is possible to use a theorem by Nevanlinna and Vainikko to obtain the spectrum of the local operator. In the case considered here the answer is no. |
Databáze: | OpenAIRE |
Externí odkaz: |