Power-Central Values and Engel Conditions in Prime Rings with Generalized Skew Derivations
Autor: | Nurcan Argaç, V. De Filippis |
---|---|
Přispěvatelé: | Ege Üniversitesi |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Mediterranean Journal of Mathematics. 18 |
ISSN: | 1660-5454 1660-5446 |
DOI: | 10.1007/s00009-021-01714-8 |
Popis: | Let R be a prime ring of characteristic different from 2 with extended centroid C, n >= 1 a fixed positive integer, F, G : R -> R two non-zero generalized skew derivations of R. (I) If (F(x)x)(n) is an element of C for all x is an element of R, then the following hold: (a) if F is an inner generalized skew derivation, then either R subset of M-2(C) or R is commutative; (b) if F is not an inner generalized skew derivation, then R is commutative. (II) If [F(x)x, G(y)y](n) = 0 for all x, y is an element of R, then R is commutative unless when char(R) = p > 0, G is an inner generalized skew derivation and R subset of M-2(C). |
Databáze: | OpenAIRE |
Externí odkaz: |