Popis: |
Background The risk of falling is significantly higher in people with chronic stroke and it is, therefore, important to design interventions to improve mobility and decrease falls risk. Minimum Toe Clearance (MTC) is the key gait cycle event for predicting tripping-falls because it occurs mid-swing during the walking cycle where forward velocity of the foot is maximum. High forward velocity coupled with low MTC increases the probability of unanticipated foot-ground contacts. Training procedures to increase toe-ground clearance (MTC) have potential, therefore, as a falls prevention intervention. The aim of this project is to determine whether augmented sensory information via real-time visual biofeedback during gait training can increase MTC. Methods Participants will be over 18 years, have sustained a single stroke (ischaemic or hemorrhagic) at least 6 months previously, able to walk 50 metres independently and capable of informed consent. Using a secure web-based application (REDCap) 150 participants will be randomly assigned to either no-feedback (Control) or feedback (Experimental) groups, all will receive 10 sessions of treadmill training for up to 10 minutes at a self-selected speed over five to six weeks. The intervention group will receive real-time, visual biofeedback of MTC during training and will be asked to modify their gait pattern to match a required “target” criterion. Biofeedback is continuous for the first six sessions then progressively reduced (faded) across the remaining four sessions. Control participants will walk on the treadmill without biofeedback. Gait assessments are conducted at baseline, immediately following the final training session and then during follow-up, at 1, 3 and 6 months. The primary outcome measure is MTC. Monthly falls calendars will also be collected for 12 months from enrolment. Discussion The project will contribute to understanding how stroke-related changes to sensory and motor processes influence gait biomechanics and associated tripping risk. The research findings will guide our work in gait rehabilitation following stroke and may reduce falls rates. Treadmill training procedures incorporating continuous real-time feedback may need to be modified to accommodate stroke patients who have greater difficulties with treadmill walking. |