Refinements of Some Recent Inequalities for Certain Special Functions
Autor: | Mohamed Amine Ighachane, Mohamed Akkouchi |
---|---|
Rok vydání: | 2019 |
Předmět: |
33B20
Inequality lcsh:Mathematics General Mathematics media_common.quotation_subject 33B15 General Medicine exponential integral function lcsh:QA1-939 Hurwitz-Lerch zeta function 26D15 Special functions 26D07 Binet’s first formula Hölder’s inequalities Abramowitz function Mathematical economics incomplete Gamma function media_common Mathematics |
Zdroj: | Annales Mathematicae Silesianae, Vol 33, Iss 1, Pp 1-20 (2019) |
ISSN: | 2391-4238 0860-2107 |
Popis: | The aim of this paper is to give some refinements to several inequalities, recently etablished, by P.K. Bhandari and S.K. Bissu in [Inequalities via Hölder’s inequality, Scholars Journal of Research in Mathematics and Computer Science, 2 (2018), no. 2, 124–129] for the incomplete gamma function, Polygamma functions, Exponential integral function, Abramowitz function, Hurwitz-Lerch zeta function and for the normalizing constant of the generalized inverse Gaussian distribution and the Remainder of the Binet’s first formula for ln Γ(x). |
Databáze: | OpenAIRE |
Externí odkaz: |