Refinements of Some Recent Inequalities for Certain Special Functions

Autor: Mohamed Amine Ighachane, Mohamed Akkouchi
Rok vydání: 2019
Předmět:
Zdroj: Annales Mathematicae Silesianae, Vol 33, Iss 1, Pp 1-20 (2019)
ISSN: 2391-4238
0860-2107
Popis: The aim of this paper is to give some refinements to several inequalities, recently etablished, by P.K. Bhandari and S.K. Bissu in [Inequalities via Hölder’s inequality, Scholars Journal of Research in Mathematics and Computer Science, 2 (2018), no. 2, 124–129] for the incomplete gamma function, Polygamma functions, Exponential integral function, Abramowitz function, Hurwitz-Lerch zeta function and for the normalizing constant of the generalized inverse Gaussian distribution and the Remainder of the Binet’s first formula for ln Γ(x).
Databáze: OpenAIRE