Experimental and Numerical Study of Shear Interface Response of Hybrid Thin CFRP–Concrete Slabs
Autor: | Lluís Gil, Amir Reza Eskenati, Amir Mahboob, Ernest Bernat-Maso |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Doctorat en Anàlisi Estructural, Universitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria, Universitat Politècnica de Catalunya. LITEM - Laboratori per a la Innovació Tecnològica d'Estructures i Materials |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Surface (mathematics)
Technology Carbon fiber-reinforced plastics Materials science experimental Interface (computing) Shear connection Glass fiber hybrid slabs Article Experimental numerical General Materials Science shear connection Hybrid slabs Composite material CFRP Plàstics reforçats amb fibra de carboni Numerical chemistry.chemical_classification Microscopy QC120-168.85 QH201-278.5 Polymer Engineering (General). Civil engineering (General) Enginyeria dels materials::Materials compostos [Àrees temàtiques de la UPC] Finite element method TK1-9971 Connection (mathematics) Shear (sheet metal) Descriptive and experimental mechanics chemistry Electrical engineering. Electronics. Nuclear engineering TA1-2040 |
Zdroj: | Materials Materials, Vol 14, Iss 5184, p 5184 (2021) Volume 14 Issue 18 |
ISSN: | 1996-1944 |
Popis: | Hybrid slabs made of carbon-fiber-reinforced polymer (CFRP) and concrete provide a solution that takes advantage of the strength properties of both materials. The performance of the system strongly depends on the CFRP–concrete interaction. This study investigates the shear behavior in the interface of the two materials. Eight full-scale experiments were carried out to characterize the interface shear response of these hybrid elements using different connection solutions. An untreated surface is compared to a surface with aggregates, with a novel system comprising a flexible, straight glass fiber mesh and an inclined glass fiber mesh. The experimental results show that the fabric connection improves the friction between materials and is responsible for the pseudo-plastic performance of the specimens. The inclined mesh produces a more uniform tightening effect compared to the straight mesh. In simulations via the finite element method, we used an adjusted frictional model to reproduce the experiments. The authors gratefully acknowledge the financial support from the Ministry of Science, Innovation and Universities of the Spanish Government (MCIU), the State Agency of Research (AEI), and the ERDF (European Regional Development Fund) through the project SEVERUS (Multilevel evaluation of seismic vulnerability and risk mitigation of masonry buildings in resilient historical urban centers, ref. num. RTI2018-099589-B-I00). Moreover, we acknowledge partial financial support from the AZVI, S.A. company through the COMPOSITO project. |
Databáze: | OpenAIRE |
Externí odkaz: |