Polynomial Kernels for Strictly Chordal Edge Modification Problems

Autor: Dumas, Maël, Perez, Anthony, Todinca, Ioan
Přispěvatelé: Laboratoire d'Informatique Fondamentale d'Orléans (LIFO), Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Golovach, Petr A. and Zehavi, Meirav
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: 16th International Symposium on Parameterized and Exact Computation, IPEC
16th International Symposium on Parameterized and Exact Computation, IPEC, Sep 2021, Lisbonne (online), Portugal. pp.17:1--17:16
Popis: We consider the Strictly Chordal Editing problem, where one is given an undirected graph G = (V,E) and a parameter k ��� ��� and seeks to edit (add or delete) at most k edges from G to obtain a strictly chordal graph. Problems Strictly Chordal Completion and Strictly Chordal Deletion are defined similarly, by only allowing edge additions for the former, and only edge deletions for the latter. Strictly chordal graphs are a generalization of 3-leaf power graphs and a subclass of 4-leaf power graphs. They can be defined, e.g., as dart and gem-free chordal graphs. We prove the NP-completeness for all three variants of the problem and provide an O(k��) vertex-kernel for the completion version and O(k���) vertex-kernels for the two others.
LIPIcs, Vol. 214, 16th International Symposium on Parameterized and Exact Computation (IPEC 2021), pages 17:1-17:16
Databáze: OpenAIRE