Identification of WT1 as determinant of heptatocellular carcinoma and its inhibition by Chinese herbal medicine Salvia chinensis Benth and its active ingredient protocatechualdehyde

Autor: Ning Wang, Yibin Feng, Yau-Tuen Chan, Wei Guo, Hor-Yue Tan, Sha Li
Rok vydání: 2017
Předmět:
Zdroj: Oncotarget
ISSN: 1949-2553
Popis: Candidates from Chinese herbal Medicine might be preferable in drug discovery as the abundant experiences of traditional use usually hint the clinical efficacy. In this study, we screened the anti-tumour effect of several commonly used Chinese herbal Medicines on human hepatocellular carcinoma cells (HCC). We identified that Salvia chinensia Benth. (Shijianchuan in Chinese, SJC) exhibited prominent in vitro inhibition of HCC cells and suppressed the orthotopic growth of HCC in the liver of mice and repressed the lung metastasis of tumour cells. Using a pathway-specific PCR array and Gene Ontology analysis, we identified that Wnt/β-catenin pathway was associated with the suppressive effect of SJC on HCC cell proliferation and cell cycle progression. SJC repressed transcription activity of Wnt/β-catenin pathway and reduced expression of β-catenin in GSK-3β-independent but promoter-specific transcription inhibition mechanism. The suppressive effect of SJC on β-catenin expression and its transcription activity was associated with Wilms’ tumor 1 (WT1) protein. WT1 was overexpressed in HCC tissues, and was negatively correlated to the overall survival of HCC patients. WT1 promoted proliferation and invasion of HCC cells, as well as β-catenin-dependent transcription activation of Wnt products, while knockdown of WT1 had the opposite effect. Docking experiment revealed that protocatechualdehyde (PCA) might be the active component of the herb. PCA suppressed transcription activity of Wnt/β-catenin pathway in WT1-dependent manner. Our study sheds light on the potential of PCA from commonly used anti-cancer Chinese herbal Medicine SJC as a lead compound targeting WT1 in the discovery of anti-HCC drugs.
Databáze: OpenAIRE