On the intersection form of surfaces

Autor: Bjoern Muetzel, Daniel Massart
Přispěvatelé: Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: manuscripta mathematica
manuscripta mathematica, Springer Verlag, 2014, 143 (1), pp.19-49. ⟨10.1007/s00229-013-0615-0⟩
ISSN: 0025-2611
1432-1785
DOI: 10.1007/s00229-013-0615-0⟩
Popis: Given a closed, oriented surface M, the algebraic intersection of closed curves induces a symplectic form Int(.,.) on the first homology group of M. If M is equipped with a Riemannian metric g, the first homology group of M inherits a norm, called the stable norm. We study the norm of the bilinear form Int(.,.), with respect to the stable norm.
30 pages, 8 figures (submitted to Manuscripta Mathematica)
Databáze: OpenAIRE