On the intersection form of surfaces
Autor: | Bjoern Muetzel, Daniel Massart |
---|---|
Přispěvatelé: | Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Mathematics - Differential Geometry
Pure mathematics intersection form 010308 nuclear & particles physics General Mathematics [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] 010102 general mathematics homology Dynamical Systems (math.DS) Algebraic geometry surfaces Bilinear form 01 natural sciences Number theory Differential Geometry (math.DG) [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] 0103 physical sciences FOS: Mathematics Intersection form 0101 mathematics Algebraic number Mathematics - Dynamical Systems Mathematics::Symplectic Geometry Symplectic geometry Mathematics |
Zdroj: | manuscripta mathematica manuscripta mathematica, Springer Verlag, 2014, 143 (1), pp.19-49. ⟨10.1007/s00229-013-0615-0⟩ |
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-013-0615-0⟩ |
Popis: | Given a closed, oriented surface M, the algebraic intersection of closed curves induces a symplectic form Int(.,.) on the first homology group of M. If M is equipped with a Riemannian metric g, the first homology group of M inherits a norm, called the stable norm. We study the norm of the bilinear form Int(.,.), with respect to the stable norm. 30 pages, 8 figures (submitted to Manuscripta Mathematica) |
Databáze: | OpenAIRE |
Externí odkaz: |