Classification and photometric redshift estimation of quasars in photometric surveys

Autor: Nina S. T. Hirata, Stephen S. Eikenberry, L. M. Izuti Nakazono, Sarik Jeram, Roderik Overzier, Conceição Queiroz, Anthony H. Gonzalez, R. Abramo, C. Mendes de Oliveira
Rok vydání: 2021
Předmět:
Zdroj: Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Popis: We present a machine learning methodology to separate quasars from galaxies and stars using data from S-PLUS in the Stripe-82 region. In terms of quasar classification, we achieved 95.49% for precision and 95.26% for recall using a Random Forest algorithm. For photometric redshift estimation, we obtained a precision of 6% using k-Nearest Neighbour.
Databáze: OpenAIRE