Popis: |
Rapid correction of chronic hyponatremia can lead to osmotic demyelination syndrome (ODS), a severe demyelination disease. The microglia that accumulate in the demyelinative lesions may play a detrimental role in the pathogenesis of ODS by producing proinflammatory cytokines, suggesting that they may be a target for therapeutic intervention. Here, we investigated whether minocycline, a selective and potent inhibitor of microglial activation, could protect against ODS in rats. We induced hyponatremia by liquid diet feeding and dDAVP infusion. Rapid correction of the hyponatremia 7 days later resulted in neurologic impairment with severe demyelinative lesions. Activated microglia accumulated at the site of demyelination. Treatment with minocycline within 24 hours of rapid correction, however, was protective: rats exhibited minimal neurologic impairment, and survival improved. Histologic analysis showed that minocycline inhibited demyelination and suppressed the accumulation of microglia at the site of demyelination. Real-time RT-PCR and immunohistochemical analyses showed that minocycline inhibited the activity of microglia and the expression of inflammatory cytokines (e.g. IL-1β, inducible nitric-oxide synthase, and TNF-α), monocyte chemoattractant protein-1, and matrix metalloproteinase-12 in microglia. These results demonstrate that minocycline can protect against ODS by inhibiting the activation and accumulation of microglia at the site of demyelinative lesions, suggesting its possible use in clinical practice. |