Temperature and mass scaling affect cutaneous and pulmonary respiratory performance in a diving frog
Autor: | Jason P. Sckrabulis, Thomas R. Raffel, Ryan B. Mcwhinnie |
---|---|
Rok vydání: | 2021 |
Předmět: |
0106 biological sciences
Body Weight 05 social sciences Global warming Metabolic theory of ecology Temperature Climate change Atmospheric sciences 010603 evolutionary biology 01 natural sciences Xenopus laevis Respirometry Pulmonary respiration Oxygen Consumption Cutaneous respiration Skin Physiological Phenomena Ectotherm Respiratory Physiological Phenomena Animals Environmental science 0501 psychology and cognitive sciences Animal Science and Zoology 050102 behavioral science & comparative psychology Proxy (statistics) |
Zdroj: | Integrative Zoology. 16:712-728 |
ISSN: | 1749-4877 |
DOI: | 10.1111/1749-4877.12551 |
Popis: | Global climate change is altering patterns of temperature variation, with unpredictable consequences for species and ecosystems. The Metabolic Theory of Ecology (MTE) provides a powerful framework for predicting climate change impacts on ectotherm metabolic performance. MTE postulates that physiological and ecological processes are limited by organism metabolic rates, which scale predictably with body mass and temperature. The purpose of this study was to determine if different metabolic proxies generate different empirical estimates of key MTE model parameters for the aquatic frog Xenopus laevis when allowed to exhibit normal diving behavior. We used a novel methodological approach in combining a flow-through respirometry setup with the open-source Arduino platform to measure mass and temperature effects on 4 different proxies for whole-body metabolism (total O2 consumption, cutaneous O2 consumption, pulmonary O2 consumption, and ventilation frequency), following thermal acclimation to one of 3 temperatures (8°C, 17°C, or 26°C). Different metabolic proxies generated different mass-scaling exponents (b) and activation energy (EA ) estimates, highlighting the importance of metabolic proxy selection when parameterizing MTE-derived models. Animals acclimated to 17°C had higher O2 consumption across all temperatures, but thermal acclimation did not influence estimates of key MTE parameters EA and b. Cutaneous respiration generated lower MTE parameters than pulmonary respiration, consistent with temperature and mass constraints on dissolved oxygen availability, SA:V ratios, and diffusion distances across skin. Our results show that the choice of metabolic proxy can have a big impact on empirical estimates for key MTE model parameters. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |