Domain decomposition for a finite volume method on non-matching grids
Autor: | Isabelle Faille, Frédéric Nataf, Laurent Saas, Françoise Willien |
---|---|
Přispěvatelé: | Ruprecht, Liliane, Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2004 |
Předmět: |
Dirichlet problem
Well-posed problem Finite volume method Numerical analysis Mathematical analysis Domain decomposition methods 010103 numerical & computational mathematics General Medicine 01 natural sciences 010101 applied mathematics Piecewise Neumann boundary condition Constant function 0101 mathematics Mathematics |
Zdroj: | Comptes rendus de l'Académie des sciences. Série I, Mathématique Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 2004, 338 n°5, pp.407-412 Comptes rendus de l'Académie des sciences. Série I, Mathématique, 2004, 338 n°5, pp.407-412 |
ISSN: | 0764-4442 |
Popis: | We are interested in a robust and accurate domain decomposition method with Robin interface conditions on non-matching grids using a finite volume discretization. We introduce transmission operators on the non-matching grids and define new interface conditions of Robin type. Under a compatibility assumption, we show the equivalence between Robin interface conditions and Dirichlet–Neumann interface conditions and the well-posedness of the global and local problems. Two error estimates are given in terms of the discrete H1-norm: one in O(h1/2) with operators based on piecewise constant functions and the other in O(h) (as in the conforming case) with operators using a linear rebuilding. Numerical results are given. To cite this article: L. Saas et al., C. R. Acad. Sci. Paris, Ser. I 338 (2004). |
Databáze: | OpenAIRE |
Externí odkaz: |