Approximate Analytical Model for Hertzian Elliptical Contact Problems
Autor: | Jean-François Antoine, Codrut Visa, G. Abba, Christophe Sauvey |
---|---|
Přispěvatelé: | Laboratoire de Génie Industriel, de Production et de Maintenance (LGIPM), Université de Lorraine (UL) |
Rok vydání: | 2006 |
Předmět: |
Surface (mathematics)
0209 industrial biotechnology Equations Errors Geometry Dimensions 02 engineering and technology Stress Displacement (vector) Stiffness law.invention Stress (mechanics) 020901 industrial engineering & automation 0203 mechanical engineering law Functions medicine Approximation Mathematics Bearing (mechanical) Rolling bearings Mechanical Engineering Mathematical analysis Surfaces and Interfaces Displacement Elasticity (physics) Surfaces Coatings and Films 020303 mechanical engineering & transports Contact mechanics Classical mechanics Exact solutions in general relativity Mechanics of Materials [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] medicine.symptom |
Zdroj: | Journal of Tribology Journal of Tribology, American Society of Mechanical Engineers, 2006, 128 (3), ⟨10.1115/1.2197850⟩ |
ISSN: | 1528-8897 0742-4787 |
DOI: | 10.1115/1.2197850 |
Popis: | In rolling bearing analysis Hertzian contact theory is used to compute local contact stiffness. This theory does not have a closed form analytical solution and requires numerical calculations to obtain results. Using approximations of elliptical functions and with a mathematical study of Hertzian results, an empirical explicit formulation is proposed in this paper and allows us to obtain the dimensions, the displacement, and the contact stress with at least 0.003% precision and it can be applied to a large range of ellipticity of the contact surface. |
Databáze: | OpenAIRE |
Externí odkaz: |