Insects in high‐elevation streams: Life in extreme environments imperiled by climate change

Autor: H. Arthur Woods, Craig E. Williamson, Dean Jacobsen, Alisha A. Shah, J. Joseph Giersch, Jackson H. Birrell, Scott Hotaling
Rok vydání: 2020
Předmět:
Zdroj: Birrell, J H, Shah, A A, Hotaling, S, Giersch, J J, Williamson, C E, Jacobsen, D & Woods, H A 2020, ' Insects in high-elevation streams : Life in extreme environments imperiled by climate change ', Global Change Biology, vol. 26, no. 12, pp. 6667-6684 . https://doi.org/10.1111/gcb.15356
ISSN: 1365-2486
1354-1013
DOI: 10.1111/gcb.15356
Popis: Climate change is altering conditions in high-elevation streams worldwide, with largely unknown effects on resident communities of aquatic insects. Here, we review the challenges of climate change for high-elevation aquatic insects and how they may respond, focusing on current gaps in knowledge. Understanding current effects and predicting future impacts will depend on progress in three areas. First, we need better descriptions of the multivariate physical challenges and interactions among challenges in high-elevation streams, which include low but rising temperatures, low oxygen supply and increasing oxygen demand, high and rising exposure to ultraviolet radiation, low ionic strength, and variable but shifting flow regimes. These factors are often studied in isolation even though they covary in nature and interact in space and time. Second, we need a better mechanistic understanding of how physical conditions in streams drive the performance of individual insects. Environment-performance links are mediated by physiology and behavior, which are poorly known in high-elevation taxa. Third, we need to define the scope and importance of potential responses across levels of biological organization. Short-term responses are defined by the tolerances of individuals, their capacities to perform adequately across a range of conditions, and behaviors used to exploit local, fine-scale variation in abiotic factors. Longer term responses to climate change, however, may include individual plasticity and evolution of populations. Whether high-elevation aquatic insects can mitigate climatic risks via these pathways is largely unknown.
Databáze: OpenAIRE