Nonstationary distributions and relaxation times in a stochastic model of memristor

Autor: Angelo Carollo, Davud V. Guseinov, A. V. Safonov, Alexander A. Dubkov, N. V. Agudov, Davide Valenti, A A Kharcheva, Alexey Belov, A. V. Krichigin, Bernardo Spagnolo, Alexey Mikhaylov
Přispěvatelé: Agudov, N V, Safonov, A V, Krichigin, A V, Kharcheva, A A, Dubkov, A A, Valenti, D, Guseinov, D V, Belov, A I, Mikhaylov, A N, Carollo, A, Spagnolo, B
Rok vydání: 2020
Předmět:
Zdroj: Journal of Statistical Mechanics: Theory and Experiment. 2020:024003
ISSN: 1742-5468
DOI: 10.1088/1742-5468/ab684a
Popis: We propose a stochastic model for a memristive system by generalizing known approaches and experimental results. We validate our theoretical model by experiments carried out on a memristive device based on multilayer structure. In the framework of the proposed model we obtain the exact analytic expressions for stationary and nonstationary solutions. We analyze the equilibrium and non-equilibrium steady-state distributions of the internal state variable of the memristive system and study the influence of fluctuations on the resistive switching, including the relaxation time to the steady-state. The relaxation time shows a nonmonotonic dependence, with a minimum, on the intensity of the fluctuations. This paves the way for using the intensity of fluctuations as a control parameter for switching dynamics in memristive devices.
Databáze: OpenAIRE