Stand-Alone Use of Artificial Intelligence for Digital Mammography and Digital Breast Tomosynthesis Screening: A Retrospective Evaluation

Autor: Sara Romero-Martín, Esperanza Elías-Cabot, José Luis Raya-Povedano, Albert Gubern-Mérida, Alejandro Rodríguez-Ruiz, Marina Álvarez-Benito
Rok vydání: 2021
Předmět:
Zdroj: Radiology. 302(3)
ISSN: 1527-1315
Popis: Background Use of artificial intelligence (AI) as a stand-alone reader for digital mammography (DM) or digital breast tomosynthesis (DBT) breast screening could ease radiologists' workload while maintaining quality. Purpose To retrospectively evaluate the stand-alone performance of an AI system as an independent reader of DM and DBT screening examinations. Materials and Methods Consecutive screening-paired and independently read DM and DBT images acquired between January 2015 and December 2016 were retrospectively collected from the Tomosynthesis Cordoba Screening Trial. An AI system computed a cancer risk score (range, 1-100) for DM and DBT examinations independently. AI stand-alone performance was measured using the area under the receiver operating characteristic curve (AUC) and sensitivity and recall rate at different operating points selected to have noninferior sensitivity compared with the human readings (noninferiority margin, 5%). The recall rate of AI and the human readings were compared using a McNemar test. Results A total of 15 999 DM and DBT examinations (113 breast cancers, including 98 screen-detected and 15 interval cancers) from 15 998 women (mean age, 58 years ± 6 [standard deviation]) were evaluated. AI achieved an AUC of 0.93 (95% CI: 0.89, 0.96) for DM and 0.94 (95% CI: 0.91, 0.97) for DBT. For DM, AI achieved noninferior sensitivity as a single (58.4%; 66 of 113; 95% CI: 49.2, 67.1) or double (67.3%; 76 of 113; 95% CI: 58.2, 75.2) reader, with a reduction in recall rate (
Databáze: OpenAIRE