Autonomous material composite morphing wing

Autor: Daniel Morton, Artemis Xu, Alberto Matute, Robert F Shepherd
Rok vydání: 2023
Předmět:
Zdroj: Journal of Composite Materials. 57:711-720
ISSN: 1530-793X
0021-9983
DOI: 10.1177/00219983231151397
Popis: Aeronautics research has continually sought to achieve the adaptability and morphing performance of avian wings, but in practice, wings of all scales continue to use the same hinged control-surface embodiment. Recent research into compliant and bio-inspired mechanisms for morphing wings and control surfaces has indicated promising results, though often these are mechanically complex, or limited in the number of degrees-of-freedom (DOF) they can control. Seeking to improve on these limitations, we apply a new paradigm denoted Autonomous Material Composites to the design of avian-scale morphing wings. With this methodology, we reduce the need for complex actuation and mechanisms, and allow for three-dimensional placement of stretchable fiber optic strain gauges (Optical Lace) throughout the metamaterial structure. This structure centers around elastomeric conformal lattices, and by applying functionally-graded warping and thickening to this lattice, we allow for local tailoring of the compliance properties to fit the desired morphing. As a result, the wing achieves high-deformation morphing in three DOF: twist, camber, and extension/compression, with these morphed shapes effectively modifying the aerodynamic performance of the wing, as demonstrated in low-Reynolds wind tunnel testing. Our sensors also successfully demonstrate differentiable trends across all degrees of morphing, enabling the future state estimation and control of this wing.
Databáze: OpenAIRE