Kinetic studies of iron deposition catalyzed by recombinant human liver heavy, and light ferritins and Azotobacter vinelandii bacterioferritin using O2 and H2O2 as oxidants

Autor: Stuart Lindsay, Garrett Davis, Thomas Lowry, David Brosnahan, Jared Bunker, Gerald D. Watt, Robert C. Costen, Paolo Arosio, Bo Zhang, Sang Choi
Rok vydání: 2005
Předmět:
Zdroj: Biophysical Chemistry. 114:235-244
ISSN: 0301-4622
Popis: The discrepancy between predicted and measured H(2)O(2) formation during iron deposition with recombinant heavy human liver ferritin (rHF) was attributed to reaction with the iron protein complex [Biochemistry 40 (2001) 10832-10838]. This proposal was examined by stopped-flow kinetic studies and analysis for H(2)O(2) production using (1) rHF, and Azotobacter vinelandii bacterial ferritin (AvBF), each containing 24 identical subunits with ferroxidase centers; (2) site-altered rHF mutants with functional and dysfunctional ferroxidase centers; and (3) recombinant human liver light ferritin (rLF), containing no ferroxidase center. For rHF, nearly identical pseudo-first-order rate constants of 0.18 s(-1) at pH 7.5 were measured for Fe(2+) oxidation by both O(2) and H(2)O(2), but for rLF, the rate with O(2) was 200-fold slower than that for H(2)O(2) (k = 0.22 s(-1)). A Fe(2+)/O(2) stoichiometry near 2.4 was measured for rHF and its site altered forms, suggesting formation of H(2)O(2). Direct measurements revealed no H(2)O(2) free in solution 0.5-10 min after all Fe(2+) was oxidized at pH 6.5 or 7.5. These results are consistent with initial H(2)O(2) formation, which rapidly reacts in a secondary reaction with unidentified solution components. Using measured rate constants for rHF, simulations showed that steady-state H(2)O(2) concentrations peaked at 14 muM at approximately 600 ms and decreased to zero at 10-30 s. rLF did not produce measurable H(2)O(2) but apparently conducted the secondary reaction with H(2)O(2). Fe(2+)/O(2) values of 4.0 were measured for AvBF. Stopped-flow measurements with AvBF showed that both H(2)O(2) and O(2) react at the same rate (k = 0.34 s(-1)), that is faster than the reactions with rHF. Simulations suggest that AvBF reduces O(2) directly to H(2)O without intermediate H(2)O(2) formation.
Databáze: OpenAIRE