Projectively nonsingular horizons in Kerr-NUT–de Sitter spacetimes

Autor: Jerzy Lewandowski, Maciej Ossowski
Rok vydání: 2020
Předmět:
Zdroj: Physical Review D. 102
ISSN: 2470-0029
2470-0010
DOI: 10.1103/physrevd.102.124055
Popis: It was recently discovered that Killing horizons in the generic Kerr-NUT-(anti) de Sitter spacetimes are projectively singular, i.e. their spaces of the null generators have singular geometry. Only if the cosmological constant takes the special value determined by the Kerr and NUT parameters, and the radius of the horizon, then the corresponding horizon does not suffer that problem. In the current paper, the projectively non-singular horizons are investigated. They are found to be cosmological and non-extremal. Every projectively non-singular horizon can be used to define a global completion of the Kerr-NUT-de Sitter spacetime it is contained in. The resulting spacetime extends from $\mathcal{I}^-$ to $\mathcal{I}^+$, has the topology of $\mathbb{R}\times S_3$ and is smooth except for a possible Kerr-like singularity.
11 pages
Databáze: OpenAIRE