A Novel Value for the Parameter in the Dai-Liao-Type Conjugate Gradient Method
Autor: | Hijaz Ahmad, Bilall I. Shaini, Miao-Kun Wang, Predrag S. Stanimirović, Branislav Ivanov |
---|---|
Rok vydání: | 2021 |
Předmět: |
021103 operations research
Article Subject Backtracking line search 0211 other engineering and technologies Value (computer science) CPU time 010103 numerical & computational mathematics 02 engineering and technology Function (mathematics) Type (model theory) 01 natural sciences Conjugate gradient method Convergence (routing) QA1-939 Applied mathematics 0101 mathematics Mathematics Analysis |
Zdroj: | Journal of Function Spaces, Vol 2021 (2021) |
ISSN: | 2314-8888 2314-8896 |
DOI: | 10.1155/2021/6693401 |
Popis: | A new rule for calculating the parameter t involved in each iteration of the MHSDL (Dai-Liao) conjugate gradient (CG) method is presented. The new value of the parameter initiates a more efficient and robust variant of the Dai-Liao algorithm. Under proper conditions, theoretical analysis reveals that the proposed method in conjunction with backtracking line search is of global convergence. Numerical experiments are also presented, which confirm the influence of the new value of the parameter t on the behavior of the underlying CG optimization method. Numerical comparisons and the analysis of obtained results considering Dolan and Moré’s performance profile show better performances of the novel method with respect to all three analyzed characteristics: number of iterative steps, number of function evaluations, and CPU time. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |