Системный подход к моделированию и прогнозированию на основе регрессионных моделей и фильтра Калмана

Autor: Irina A. Shubenkova, Petro I. Bidyuk, Svitlana K. Petrova
Rok vydání: 2017
Předmět:
regression model
Kalman filter
short-term forecast
dynamic and statistical estimations of forecasts
probabilistic and statistical methods
Basis (linear algebra)
Computer science
business.industry
Applied Mathematics
Regression analysis
Machine learning
computer.software_genre
Theoretical Computer Science
Extended Kalman filter
Computational Theory and Mathematics
регресійна модель
фільтр Калмана
короткочасний прогноз
динамічні та статистичні оцінки прогнозів
імовірнісно-статистичні методи
Artificial Intelligence
регрессионная модель
фильтр Калмана
кратковременный прогноз
динамические и статистические оценки прогнозов
вероятностно-статистические методы
Artificial intelligence
Systemic approach
business
computer
Zdroj: Системні дослідження та інформаційні технології; № 2 (2017); 52-61
Системные исследования и информационные технологии; № 2 (2017); 52-61
System research and information technologies; № 2 (2017); 52-61
ISSN: 2308-8893
1681-6048
DOI: 10.20535/srit.2308-8893.2017.2.05
Popis: Предложена концепция адаптивного моделирования финансово-экономических процессов, основанная на одновременном использовании регрессионных моделей и оптимального фильтра Калмана для уменьшения влияния случайных возмущений и погрешностей измерений на статистические данные. Создано программное обеспечение, необходимое для проведения вычислительных экспериментов. Для выбранных финансово-экономических процессов построены несколько регрессионных моделей, которые дополнительно были преобразованы в пространство состояний. Проверка разработанной системы прогнозирования на различных выборках финансовых и экономических данных показала, что можно достигнуть приемлемых значений средней абсолютной погрешности в процентах (около 5–8%) для краткосрочных прогнозов. В зависимости от конкретной постановки задачи использовались динамические и статические оценки прогнозов, которые дали возможность получить необходимую точность оценок. Использование фильтра Калмана для предварительной обработки данных (уменьшения влияния случайных возмущений и шумов измерений) и краткосрочного прогнозирования дает возможность дополнительно уменьшить погрешности оценок прогнозов в среднем на 1,5–2%. В дальнейшем планируется создать специализированную систему поддержки принятия решений для решения задач прогнозирования на основе вероятностно-статистических методов.
A concept for adaptive modeling of financial and economic processes is proposed that is based upon simultaneous application of regression models and optimal Kalman filter for reducing the influence of stochastic disturbances and measurement errors on statistical data. Specialized software has been developed that is necessary for performing computational experiments. Several regression models were constructed for the selected financial and economic processes that were transformed to the state space representation. Testing of the software system developed using various data samples of financial and economic data showed that it was quite possible to reach an acceptable quality of short-term forecasting with the mean absolute percentage error of about 5–8 %. Depending on a specific problem statement, dynamic and static estimates of forecasts were used with an acceptable quality. An application of Kalman filter for preliminary data processing (reduction of the influence of external stochastic disturbances and measurement errors) and short term forecasting provides a possibility for further reduction of forecasting errors by about 1,5–2,0 %. In the future research, it is planned to develop a specialized decision support system for solving the problems of forecasting on the basis of probabilistic and statistical procedures.
Запропоновано концепцію адаптивного моделювання фінансово-економічних процесів, яка ґрунтується на одночасному використанні регресійних моделей і оптимального фільтра Калмана для зменшення впливу випадкових збурень та похибок вимірювань статистичних даних. Створено програмне забезпечення, необхідне для виконання обчислювальних експериментів. Для вибраних фінансово-економічних процесів побудовано кілька регресійних моделей, додатково перетворених у простір станів. Випробування розробленої системи прогнозування на різних вибірках фінансових та економічних даних показало, що можна досягти прийнятних значень середньої абсолютної похибки близько 5–8 % для короткострокових прогнозів. Залежно від конкретної постановки задачі використано динамічні і статичні оцінки прогнозів для отримання потрібних точних оцінок. Застосування фільтра Калмана для попереднього оброблення даних (зменшення впливу випадкових збурень та шумів вимірів) і короткострокового прогнозування дає змогу додатково зменшити кількість похибок оцінок прогнозів на 1,5–2,0 %. У подальших дослідженнях передбачається створити спеціалізовану систему підтримання прийняття рішень для розв’язання задач прогнозування на основі ймовірнісно-статистичних методів.
Databáze: OpenAIRE