Global dust model intercomparison in AeroCom phase I

Autor: Steven J. Ghan, F. J. Dentener, Ron L. Miller, Stefan Kinne, Joyce E. Penner, Xiaohong Liu, William M. Landing, Yves Balkanski, Charles S. Zender, Toshihiko Takemura, Gunnar Myhre, Mian Chin, D. Fillmore, J. Perlwitz, Dorothy Koch, Olivier Boucher, Philip Stier, Alf Grini, Thomas Diehl, Jan Griesfeller, Joseph M. Prospero, Larry W. Horowitz, Natalie M. Mahowald, Paul Ginoux, Maarten Krol, Richard C. Easter, Susanne E. Bauer, Michael Schulz, Jean-Jacques Morcrette, Nicolás Huneeus
Přispěvatelé: Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics (MERMAID), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), National Institute for Environmental Studies (NIES), Max Planck Institute for Meteorology (MPI-M), Max-Planck-Gesellschaft, INGENIERIE (INGENIERIE), Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), JRC Institute for Environment and Sustainability (IES), European Commission - Joint Research Centre [Ispra] (JRC), Batelle, National Center for Atmospheric Research [Boulder] (NCAR), Pacific Northwest National Laboratory (PNNL), NOAA Geophysical Fluid Dynamics Laboratory (GFDL), National Oceanic and Atmospheric Administration (NOAA), Department of Geosciences [Oslo], Faculty of Mathematics and Natural Sciences [Oslo], University of Oslo (UiO)-University of Oslo (UiO), Nat Inst Space Res, Partenaires INRAE, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Cornell University [New York], European Centre for Medium-Range Weather Forecasts (ECMWF), University of Michigan [Ann Arbor], University of Michigan System, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado [Boulder]-National Oceanic and Atmospheric Administration (NOAA), Department of Physics [Oxford], University of Oxford, Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan, University of California [Irvine] (UC Irvine), University of California (UC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), University of Oxford [Oxford], University of California [Irvine] (UCI), University of California, Union, European Geosciences
Rok vydání: 2011
Předmět:
Meteorologie en Luchtkwaliteit
Atmospheric Science
Biogeochemical cycle
Angstrom exponent
Meteorology and Air Quality
010504 meteorology & atmospheric sciences
goddard-institute
aerosol direct
Atmospheric
Oceanic
and Planetary physics

[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
Magnitude (mathematics)
general-circulation model
Environment
010501 environmental sciences
Mineral dust
010502 geochemistry & geophysics
Atmospheric sciences
01 natural sciences
General-circulation model
atmospheric iron deposition
last glacial maximum
mineral dust
tropospheric chemistry
optical-properties
Goddard-Institute
North-Atlantic
sulfur cycle
lcsh:Chemistry
Haboob
Physical Sciences and Mathematics
medicine
north-atlantic
0105 earth and related environmental sciences
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere

WIMEK
Physics
Arid environmental systems
Seasonality
medicine.disease
lcsh:QC1-999
Aerosol
Deposition (aerosol physics)
lcsh:QD1-999
[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
13. Climate action
Climatology
Environmental science
lcsh:Physics
Zdroj: Atmospheric Chemistry and Physics
Atmospheric Chemistry and Physics, 2011, 11 (15), pp.7781-7816. ⟨10.5194/acp-11-7781-2011⟩
Atmospheric Chemistry and Physics, European Geosciences Union, 2011, 11 (15), pp.7781-7816. ⟨10.5194/acp-11-7781-2011⟩
Atmospheric chemistry and physics, 11(15), 7781. Copernicus Publications
Huneeus, N.; Schulz, M.; Balkanski, Y.; Griesfeller, J.; Prospero, J.; Kinne, S.; et al.(2011). Global dust model intercomparison in AeroCom phase I. Atmospheric Chemistry and Physics, 11(15), 7781-7816. doi: 10.5194/acp-11-7781-2011. UC Irvine: Department of Earth System Science, UCI. Retrieved from: http://www.escholarship.org/uc/item/6g03v2hm
Atmospheric Chemistry and Physics, Vol 11, Iss 15, Pp 7781-7816 (2011)
Atmospheric Chemistry and Physics 11 (2011) 15
Atmospheric Chemistry and Physics, 11(15), 7781-7816
ISSN: 1680-7324
1680-7316
DOI: 10.5194/acp-11-7781-2011
Popis: Desert dust plays an important role in the climate system through its impact on Earth¿s radiative budget and its role in the biogeochemical cycle as a source of iron in highnutrient- low-chlorophyll regions. A large degree of diversity exists between the many global models that simulate the dust cycle to estimate its impact on climate. We present the results of a broad intercomparison of a total of 15 global aerosol models within the AeroCom project. Each model is compared to observations focusing on variables responsible for the uncertainties in estimating the direct radiative effect and the dust impact on the biogeochemical cycle, i.e., aerosol optical depth (AOD) and dust deposi10 tion. Additional comparisons to Angstro¨m Exponent (AE), coarse mode AOD and dust surface concentration are included to extend the assessment of model performance. These datasets form a benchmark data set which is proposed for model inspection and future dust model developments. In general, models perform better in simulating climatology of vertically averaged integrated parameters (AOD and AE) in dusty sites 15 than they do with total deposition and surface concentration. Almost all models overestimate deposition fluxes over Europe, the Indian Ocean, the Atlantic Ocean and ice core data. Differences among the models arise when simulating deposition at remote sites with low fluxes over the Pacific and the Southern Atlantic Ocean. This study also highlights important differences in models ability to reproduce the deposition flux over Antarctica. The cause of this discrepancy could not be identified but different dust regimes at each site and issues with data quality should be considered. Models generally simulate better surface concentration at stations downwind of the main sources than at remote ones. Likewise, they simulate better surface concentration at stations affected by Saharan dust than at stations affected by Asian dust. Most models simulate the gradient in AOD and AE between the different dusty regions, however the seasonality and magnitude of both variables is better simulated at African stations than Middle East ones. The models also reproduce the dust transport across the Atlantic in terms of both AOD and AE; they simulate the offshore transport of West Africa throughout the year and limit the transport across the Atlantic to the summer months, yet overestimating the AOD and transporting too fine particles. However, most of the models do not reproduce the southward displacement of the dust cloud during the winter responsible of the transport of dust into South America. Based on the dependency of AOD on aerosol 5 burden and size distribution we use model data bias with respect to AOD and AE and infer on the over/under estimation of the dust emissions. According to this we suggest the emissions in the Sahara be between 792 and 2271 Tg/yr and the one in the Middle East between 376 and 526 Tg/yr.
JRC.DDG.H.2-Climate change and air quality
Databáze: OpenAIRE