On the Lawson–Lim means and Karcher mean for positive invertible operators
Autor: | Zemin Ren, Pujun Long, Junliang Wu, Wenshi Liao |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Research Applied Mathematics lcsh:Mathematics 010102 general mathematics Ando–Li–Mathias geometric mean 010103 numerical & computational mathematics 15A45 lcsh:QA1-939 01 natural sciences law.invention Invertible matrix law 47A63 47A64 Lawson–Lim geometric mean Discrete Mathematics and Combinatorics 0101 mathematics Geometric mean Analysis Mathematics Karcher mean Kantorovich constant |
Zdroj: | Journal of Inequalities and Applications, Vol 2018, Iss 1, Pp 1-9 (2018) Journal of Inequalities and Applications |
DOI: | 10.1186/s13660-018-1817-5 |
Popis: | This note aims to generalize the reverse weighted arithmetic–geometric mean inequality of n positive invertible operators due to Lawson and Lim. In addition, we make comparisons between the weighted Karcher mean and Lawson–Lim geometric mean for higher powers. |
Databáze: | OpenAIRE |
Externí odkaz: |