A condition for the nonsymmetric saddle point matrix being diagonalizable and having real and positive eigenvalues

Autor: Guang-Hui Cheng, Shu-Qian Shen, Ting-Zhu Huang
Rok vydání: 2008
Předmět:
Zdroj: Journal of Computational and Applied Mathematics. 220:8-12
ISSN: 0377-0427
DOI: 10.1016/j.cam.2007.07.014
Popis: This paper discusses the spectral properties of the nonsymmetric saddle point matrices of the form A=[ABT;-BC] with A symmetric positive definite, B full rank, and C symmetric positive semidefinite. A new sufficient condition is obtained so that A is diagonalizable with all its eigenvalues real and positive. This condition is weaker than that stated in the recent paper [J. Liesen, A note on the eigenvalues of saddle point matrices, Technical Report 10-2006, Institute of Mathematics, TU Berlin, 2006].
Databáze: OpenAIRE