Demethoxycurcumin Suppresses Human Brain Glioblastoma Multiforme GBM 8401 Cell Xenograft Tumor in Nude Mice In Vivo
Autor: | Ching-Lung Liao, Fei-Ting Hsu, Yi-Shih Ma, Chao Lin Kuo, Yi-Ping Huang, Shu-Fen Peng, Kuang-Chi Lai, Po-Yuan Chen |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Male
Cell H&E stain Apoptosis chemistry.chemical_compound Mice Random Allocation Genes Reporter Biology (General) Spectroscopy bcl-2-Associated X Protein Brain Neoplasms in vivo General Medicine nude mice Computer Science Applications XIAP Neoplasm Proteins Tumor Burden Chemistry medicine.anatomical_structure Liver Proto-Oncogene Proteins c-bcl-2 Immunohistochemistry QH301-705.5 demethoxycurcumin (DMC) Mice Nude X-Linked Inhibitor of Apoptosis Protein Catalysis Article Inorganic Chemistry glioblastoma multiforme In vivo Diarylheptanoids Cell Line Tumor medicine Animals Humans Physical and Theoretical Chemistry Molecular Biology QD1-999 xenograft tumor Dimethyl sulfoxide Organic Chemistry Molecular biology Antineoplastic Agents Phytogenic Xenograft Model Antitumor Assays Staining chemistry Glioblastoma |
Zdroj: | International Journal of Molecular Sciences Volume 22 Issue 11 International Journal of Molecular Sciences, Vol 22, Iss 5503, p 5503 (2021) |
ISSN: | 1422-0067 |
Popis: | Demethoxycurcumin (DMC), a derivate of curcumin, has been shown to induce apoptotic cell death in human glioblastoma multiforme GBM 8401 cells via cell cycle arrest and induction of cell apoptosis. However, there is no report showing DMC suppresses glioblastoma multiforme cells in vivo. In the present study, we investigated the effects of DMC on GBM8401 cells in vivo. At first, we established a luciferase-expressing stable clone named GBM 8401/luc2. Second, mice were inoculated subcutaneously with GBM 8401/luc2 cells to generate a xenograft tumor mice model. After inoculation, tumor volume reached 100–120 mm3, and all mice were randomly divided into three groups: Group I was treated with 110 µL phosphate-buffered solution (PBS) containing 0.1% dimethyl sulfoxide, Group II with 30 mg/kg of DMC, and Group III with 60 mg/kg of DMC. Mice from each group were given the oral treatment of DMC by gavage for 21 days. The body weight and tumor volume were recorded every 3 days. DMC significantly decreased the tumor volumes, and 60 mg/kg treatment showed a higher decrease in tumor volumes than that of 30 mg/kg, However, DMC did not affect the body weights. The photons emitted from mice tumors were detected with Xenogen IVIS imaging system, DMC at both doses decreased the total photon flux and 60 mg/kg treatment of DMC has low total photon flux than that of 30 mg/kg. The tumor volumes and weights in 60 mg/kg treatment of DMC were lower than that of 30 mg/kg. Immunohistochemical analysis was used to measure protein expression of tumors and results showed that DMC treatment led to lightly staining with anti-Bcl-2 and -XIAP and 60 mg/kg treatment of DMC has lighter staining with anti-Bcl-2 and -XIAP than that of 30 mg/kg. The higher dose (60 mg/kg) of DMC has higher signals of cleaved-caspase-3 than that of the lower dose (30 mg/kg). Furthermore, the hematoxylin and eosin (H& E) staining of liver tissues showed no significant difference between DMC-treated and control-groups. Overall, these observations showed that DMC suppressed tumor properties in vivo and DMC may be used against human glioblastoma multiforme in the future. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |