Characteristics and comparative analysis of Mesona chinensis Benth chloroplast genome reveals DNA barcode regions for species identification

Autor: Danfeng Tang, Yang Lin, Fan Wei, Changqian Quan, Kunhua Wei, Yanyan Wei, Zhongquan Cai, Muhammad Haneef Kashif, Jianhua Miao
Rok vydání: 2022
Předmět:
Zdroj: Functional & Integrative Genomics. 22:467-479
ISSN: 1438-7948
1438-793X
DOI: 10.1007/s10142-022-00846-8
Popis: Mesona chinensis Benth (MCB) is an important medicinal and edible plant in Southern China and Southeast Asian countries. Chloroplast (cp) genome is usually used for plant phylogeny, species identification, and chloroplast genetic engineering. To characterize the cp genome and determine the evolutionary position and perform the genetic diversity analysis of MCB, we sequence and characterize the MCB cp genome. The results show that the cp genome of MCB is a single circular molecule with a length of 152,635 bp. It is a typical quadripartite structure, comprising a large single-copy region (LSC, 83,514 bp) and a small single-copy region (SSC, 17,751 bp) separated by two inverted repeat regions (IRs, 51,370 bp). It encodes 129 unique genes, including 84 protein-coding genes (PCGs), 37 transfer RNAs (tRNAs), and 8 ribosomal RNAs (rRNAs). Altogether 127 simple sequence repeats (SSRs) are identified in the MCB cp genome with 86.61% of mononucleotide repeats. Phylogenetic analysis reveals that MCB is most closely related to Ocimum basilicum based on the whole cp genomes. Several highly divergent regions are found, such as trnH_psbA, rps16_trnQ, trnS_trnG, trnE_trnT, psaA_ycf3, rpl32_trnL, ccsA_ndhD, ndhG_ndhI, and rps15_ycf1, which can be proposed for use as DNA barcode regions. Genetic diversity analysis unveils a relatively narrow genetic basis of MCB germplasm resources. Therefore, the innovative breeding of MCB is very urgent and necessary in future research.
Databáze: OpenAIRE