Eigenvalue and Resonance Asymptotics in perturbed periodically twisted tubes: Twisting versus Bending

Autor: Pablo A. Miranda, Vincent Bruneau, Nicolas Popoff, Daniel Parra
Přispěvatelé: Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Departamento de Matemática y Ciencia de la Computación [Santiago de Chile] (DMCC), Probabilités, statistique, physique mathématique (PSPM), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Annales Henri Poincaré
Annales Henri Poincaré, Springer Verlag, 2020, 21 (2), pp.377-403. ⟨10.1007/s00023-019-00865-5⟩
ISSN: 1424-0637
1424-0661
DOI: 10.1007/s00023-019-00865-5⟩
Popis: We consider a three-dimensional waveguide that is a small deformation of a periodically twisted tube (including in particular the case of a straight tube). The deformation is given by a bending and an additional twisting of the tube, both parametrized by a coupling constant $$\delta $$. In this deformed waveguide, we consider the Dirichlet Laplacian. We expand its resolvent near the bottom of its essential spectrum, and we show the existence of exactly one resonance, in the asymptotic regime of $$\delta $$ small. We are able to perform the asymptotic expansion of the resonance in $$\delta $$, which in particular permits us to give a quantitative geometric criterion for the existence of a discrete eigenvalue below the essential spectrum. In the case of perturbations of straight tubes, we are able to show the existence of resonances not only near the bottom of the essential spectrum but near each threshold in the spectrum, showing in particular what are the spectral effects of the bending for higher energies. We also obtain the asymptotic behavior of the resonances in this situation, which is generically different from the first case.
Databáze: OpenAIRE