Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks

Autor: Moi Hoon, Yap, Gerard, Pons, Joan, Marti, Sergi, Ganau, Melcior, Sentis, Reyer, Zwiggelaar, Adrian K, Davison, Robert, Marti, Moi Hoon Yap
Přispěvatelé: Manchester Metropolitan University, Universitat de Girona, Aberystwyth University, University of Manchester, Universitat Oberta de Catalunya (UOC)
Rok vydání: 2018
Předmět:
Databases
Factual

detección de lesiones
transferencia de aprendizaje
02 engineering and technology
transfer learning
cáncer de mama
redes neuronales convolucionales
Convolutional neural network
030218 nuclear medicine & medical imaging
ultrasound imaging
0302 clinical medicine
Health Information Management
càncer de mama
convolutional neural networks
0202 electrical engineering
electronic engineering
information engineering

False positive paradox
Medicine
Computer vision
Breast
Breast -- Cancer
Breast ultrasound
medicine.diagnostic_test
Artificial neural network
Ultrasound
Computer Science Applications
Female
020201 artificial intelligence & image processing
Ultrasonography
Mammary

Transfer of learning
Algorithms
Biotechnology
Breast Neoplasms
detecció de lesions
xarxes neuronals convolucionals
03 medical and health sciences
breast cancer
imagen de ultrasonido
Image Interpretation
Computer-Assisted

Humans
Electrical and Electronic Engineering
Mama -- Cáncer
business.industry
Deep learning
Pattern recognition
imatges per ultrasò
lesion detection
transferir l'aprenentatge
Ranking
Mama -- Càncer
Neural Networks
Computer

Artificial intelligence
business
Zdroj: O2, repositorio institucional de la UOC
Universitat Oberta de Catalunya (UOC)
Yap, M H, Pons, G, Martí, J, Ganau, S, Sentís, M, Zwiggelaar, R, Davison, A K & Martí, R 2018, ' Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks ', IEEE Journal of Biomedical and Health Informatics, vol. 22, no. 4, pp. 1218-1226 . https://doi.org/10.1109/JBHI.2017.2731873
ISSN: 2168-2208
2168-2194
DOI: 10.1109/jbhi.2017.2731873
Popis: Breast lesion detection using ultrasound imaging is considered an important step of computer-aided diagnosis systems. Over the past decade, researchers have demonstrated the possibilities to automate the initial lesion detection. However, the lack of a common dataset impedes research when comparing the performance of such algorithms. This paper proposes the use of deep learning approaches for breast ultrasound lesion detection and investigates three different methods: a Patch-based LeNet, a U-Net, and a transfer learning approach with a pretrained FCN-AlexNet. Their performance is compared against four state-of-the-art lesion detection algorithms (i.e., Radial Gradient Index, Multifractal Filtering, Rule-based Region Ranking, and Deformable Part Models). In addition, this paper compares and contrasts two conventional ultrasound image datasets acquired from two different ultrasound systems. Dataset A comprises 306 (60 malignant and 246 benign) images and Dataset B comprises 163 (53 malignant and 110 benign) images. To overcome the lack of public datasets in this domain, Dataset B will be made available for research purposes. The results demonstrate an overall improvement by the deep learning approaches when assessed on both datasets in terms of True Positive Fraction, False Positives per image, and F-measure.
Databáze: OpenAIRE