Popis: |
Vapor pressure difference (VPD) is the main driving force of plant transpiration and the main factor of greenhouse environment regulation. Nitrogen is the main element of crop growth and development. It is significant to explore the regulation of VPD on nitrogen absorption and its effect on tomato photosynthesis. In this paper, using tomato as material, using an artificial climate chamber, the effect of VPD and nitrogen level coupling on nitrogen absorption and distribution, hydraulic characteristics, and photosynthetic characteristics of tomato was studied and analyzed. The optimal regulation of VPD and nitrogen was analyzed. Studies have shown that appropriately reducing the VPD can promote the absorption of nitrogen by plants. The increased surface area and volume of tomato roots and the increased activity of nitrogen assimilation-related enzymes were beneficial to nitrogen absorption and assimilation. Compared with high VPD (HVPD) plants, the leaf thickness and spongy tissue thickness of low VPD (LVPD) plants decreased, and the palisade/spongy tissue thickness ratio (P/S) increased; Leaf water conductance (K |