The tangent complex of K-theory

Autor: Benjamin Hennion
Rok vydání: 2021
Předmět:
Zdroj: Journal de l’École polytechnique — Mathématiques. 8:895-932
ISSN: 2270-518X
DOI: 10.5802/jep.161
Popis: We prove that the tangent complex of K-theory, in terms of (abelian) deformation problems over a characteristic 0 field k, is cyclic homology (over k). This equivalence is compatible with the $\lambda$-operations. In particular, the relative algebraic K-theory functor fully determines the absolute cyclic homology over any field k of characteristic 0. We also show that the Loday-Quillen-Tsygan generalized trace comes as the tangent morphism of the canonical map $BGL_\infty \to K$. The proof builds on results of Goodwillie, using Wodzicki's excision for cyclic homology and formal deformation theory \`a la Lurie-Pridham.
Comment: 36 pages. Final version. To appear in Journal de l'\'Ecole Polytechnique
Databáze: OpenAIRE