Brauer–Thrall for Totally Reflexive Modules over Local Rings of Higher Dimension

Autor: Ryo Takahashi, Olgur Celikbas, Mohsen Gheibi
Rok vydání: 2013
Předmět:
Zdroj: Algebras and Representation Theory. 17:997-1008
ISSN: 1572-9079
1386-923X
DOI: 10.1007/s10468-013-9432-0
Popis: Let $R$ be a commutative Noetherian local ring. Assume that $R$ has a pair $\{x,y\}$ of exact zerodivisors such that $\dim R/(x,y)\ge2$ and all totally reflexive $R/(x)$-modules are free. We show that the first and second Brauer--Thrall type theorems hold for the category of totally reflexive $R$-modules. More precisely, we prove that, for infinitely many integers $n$, there exists an indecomposable totally reflexive $R$-module of multiplicity $n$. Moreover, if the residue field of $R$ is infinite, we prove that there exist infinitely many isomorphism classes of indecomposable totally reflexive $R$-modules of multiplicity $n$.
to appear in Algebras and Representation Theory
Databáze: OpenAIRE