Brauer–Thrall for Totally Reflexive Modules over Local Rings of Higher Dimension
Autor: | Ryo Takahashi, Olgur Celikbas, Mohsen Gheibi |
---|---|
Rok vydání: | 2013 |
Předmět: |
Noetherian
General Mathematics Local ring Multiplicity (mathematics) Commutative Algebra (math.AC) Mathematics - Commutative Algebra Combinatorics Residue field FOS: Mathematics Representation Theory (math.RT) Indecomposable module Commutative property Mathematics - Representation Theory Mathematics |
Zdroj: | Algebras and Representation Theory. 17:997-1008 |
ISSN: | 1572-9079 1386-923X |
DOI: | 10.1007/s10468-013-9432-0 |
Popis: | Let $R$ be a commutative Noetherian local ring. Assume that $R$ has a pair $\{x,y\}$ of exact zerodivisors such that $\dim R/(x,y)\ge2$ and all totally reflexive $R/(x)$-modules are free. We show that the first and second Brauer--Thrall type theorems hold for the category of totally reflexive $R$-modules. More precisely, we prove that, for infinitely many integers $n$, there exists an indecomposable totally reflexive $R$-module of multiplicity $n$. Moreover, if the residue field of $R$ is infinite, we prove that there exist infinitely many isomorphism classes of indecomposable totally reflexive $R$-modules of multiplicity $n$. to appear in Algebras and Representation Theory |
Databáze: | OpenAIRE |
Externí odkaz: |