Closed-chest small animal model to study myocardial infarction in an MRI environment in real time
Autor: | Thore Dietrich, Sebastian Kozerke, Darach O h-Ici, Daniel Messroghli, Sarah Jeuthe, Titus Kuehne, Felix Berger |
---|---|
Rok vydání: | 2014 |
Předmět: |
Male
medicine.medical_specialty Time Factors medicine.medical_treatment Myocardial Infarction Ischemia Magnetic Resonance Imaging Cine Myocardial Reperfusion Injury Ventricular Function Left Rats Sprague-Dawley Electrocardiography Ventricular Dysfunction Left Left coronary artery Predictive Value of Tests medicine.artery Internal medicine Occlusion medicine Animals Radiology Nuclear Medicine and imaging Myocardial infarction Thoracotomy Ejection fraction business.industry Stroke Volume medicine.disease Disease Models Animal Coronary occlusion Anesthesia Cardiology Myocardial infarction diagnosis Cardiology and Cardiovascular Medicine business |
Zdroj: | The International Journal of Cardiovascular Imaging. 31:115-121 |
ISSN: | 1573-0743 1569-5794 |
DOI: | 10.1007/s10554-014-0539-0 |
Popis: | Current models for real time study of the effects of myocardial ischemia/reperfusion have major limitations and confounders. Confounders include the surgical stresses of a thoracotomy and abnormal physiology of an open chest. The need to reposition the animal interferes with the study of the early changes associated with ischemia. Direct comparison of pre-ischemia and post-ischemia images is then difficult. We developed a novel "closed chest" model of ischemia/reperfusion to overcome these issues. Following thoracotomy, we sutured a balloon occluder to the left coronary artery of male Sprague-Dawley rats. We used both visual inspection and ECG to assess for successful occlusion and reperfusion of the coronary artery at the time of operation by brief inflation and deflation of the balloon. The tubing was then placed under the skin and the incision closed. Following a recovery period (5-10 days), the animals underwent MRI. We performed baseline assessment of left ventricle function, and repeated LV measurement during a 15-min coronary occlusion and again during a 60-min reperfusion period following reopening of the coronary artery. The occluder was successfully placed in 40 of 44 animals. Four developed intraoperative complications; two large myocardial infarction, two terminal bleeding. Six died in the week following surgery, [four sudden deaths (presumed arrhythmic), one anterior infarction, one sepsis]. Cine-MRI demonstrated localised hypokinesia in 31 of the remaining 34 animals. LV ejection fraction (EF) was reduced from 63 ± 7 % at baseline, to 49 ± 9 % during coronary occlusion. LV EF recovered to 61 ± 2 %. The area at risk on staining of the heart was 41.9 ± 15.8 %. This method allows the effects of ischemia/reperfusion to be studied before, during, and after coronary occlusion. Ischemia can be caused while the animal is in the MRI. This new and clinically relevant small animal model is a valuable tool to study the effects of single or repeated coronary occlusion/reperfusion in real-time. |
Databáze: | OpenAIRE |
Externí odkaz: |