Impact of magnetic field on boundary-layer flow of Sisko liquid comprising nanomaterials migration through radially shrinking/stretching surface with zero mass flux

Autor: El-Sayed M. Sherif, Zahir Shah, Umair Khan, Aurang Zaib, Dumitru Baleanu
Rok vydání: 2020
Předmět:
Zdroj: Journal of Materials Research and Technology, Vol 9, Iss 3, Pp 3699-3709 (2020)
ISSN: 2238-7854
DOI: 10.1016/j.jmrt.2020.01.107
Popis: In the recent past, many claims on thermo-physical characteristics of nanofluids in different flow regimes, especially laminar flow regime have been comprised in literature. Keeping these in mind, the focus of the current review is to study the physical aspects of laminar two-dimensional flow of magnetic-Sisko fluid where nanoparticles are present. In addition, the mass and the heat transfer features through convective boundary and zero mass flux conditions have been examined. This paper is probably the first contribution concerning the multiple solutions for axi-symmetric flow of Sisko nanofluids owing to a radially shrinking surface. The physical situation is modelled with the aid of mass, momentum and energy conservation equations. This investigation employs the non-dimensional variables to transmute the conserving PDE’s to a system of ODE’s. In the numerical study, a collocated numerical technique, namely, bvp4c based on finite difference technique is utilized to obtain the results of the aforementioned problem. This scheme allows us to acquire the multiple solutions (lower and upper) for various specific values of shrinking and suction constraint. The outcomes from this review exhibit that the suction parameter accelerates the local skin friction in the phenomenon of the first solution while a repeal trend is watched for the second solution. It is further visualized that the presence of a high magnetic field shrinks the liquid velocity. In addition, the Sisko constraint decelerates the skin friction and the Nusselt number in the first solution and accelerated in the second solution. Finally, the results of a current study established a superb correlation with existing data for selected parameter values.
Databáze: OpenAIRE