Antimicrobial colloidal silver-lignin particles via ion and solvent exchange
Autor: | Jani Seitsonen, Guillaume Riviere, Zekra Mousavi, Hélder A. Santos, Matti Niemelä, Patrícia Figueiredo, Leena-Sisko Johansson, Johan Bobacka, Kalle Lintinen, Mauri A. Kostiainen, Monika Österberg, Sanna Luiro, Ulriika Mattinen, Päivi Tammela, Ekaterina Sakarinen |
---|---|
Přispěvatelé: | Divisions of Faculty of Pharmacy, Nanomedicines and Biomedical Engineering, Division of Pharmaceutical Chemistry and Technology, Drug Research Program, University Management, Division of Pharmaceutical Biosciences, Bioactivity Screening Group, Helsinki Institute of Life Science HiLIFE, Biohybrid Materials, University of Helsinki, Åbo Akademi University, Department of Applied Physics, Bioproduct Chemistry, University of Oulu, Department of Bioproducts and Biosystems, Aalto-yliopisto, Aalto University |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
particle
General Chemical Engineering 116 Chemical sciences Nanoparticle lignin 02 engineering and technology engineering.material 010402 general chemistry 01 natural sciences chemistry.chemical_compound Colloid DELIVERY Coating NANOPARTICLES Environmental Chemistry Lignin silver colloid Renewable Energy Sustainability and the Environment fungi Cationic polymerization food and beverages General Chemistry 021001 nanoscience & nanotechnology 0104 chemical sciences Solvent antibacterial chemistry Chemical engineering engineering Particle 0210 nano-technology Antibacterial activity |
Popis: | Acid-precipitated lignin nanoparticles with a cationic polymer coating exhibit antibacterial activity when infused with silver. While the use of such particles would be beneficial due to their high antibacterial activity with a low silver content, their production holds steps that are difficult to scale up to inexpensive industrial manufacture. For example, the production of acid-precipitated lignin nanoparticles requires the use of ethylene glycol, which is not easily recycled. Furthermore, the binding of silver to these particles is weak, and thus the particles need to be used rapidly after preparation. Here, we show that with a deprotonation reaction of an organic solution of anhydrous lignin and subsequent ion exchange with silver nitrate and colloid formation by solvent exchange, highly spherical silver carboxylate colloidal lignin particles (AgCLPs) can be prepared. Silver is not released from the particles in deionized water but can be released in physiological conditions, shown by their high antibacterial efficacy with low silver loading. In comparison to lignin nanoparticles with weakly bound silver, AgCLPs have high antibacterial activity even without cationic polyelectrolyte coating, and they retain their antibacterial activity for days. While the rapid depletion of silver from silver-infused lignin nanoparticles can be considered beneficial for some applications, the sustained antibacterial activity of the AgCLPs with ionically bound silver will enable their use in applications where silver nanoparticles have been previously used. Our results demonstrate that CLPs, which can be produced with a closed cycle process on a large scale, can be rapidly and quantitatively functionalized into active materials. |
Databáze: | OpenAIRE |
Externí odkaz: |