Motivic zeta functions of degenerating Calabi-Yau varieties

Autor: Johannes Nicaise, Lars Halvard Halle
Přispěvatelé: Commission of the European Communities, Halle L.H., Nicaise J.
Rok vydání: 2017
Předmět:
Pure mathematics
NERON MODELS
Mathematics::Number Theory
ETALE COHOMOLOGY
General Mathematics
Calabi-Yau varieties
degenerations
motivic zeta functions

01 natural sciences
Interpretation (model theory)
0101 Pure Mathematics
Mathematics - Algebraic Geometry
symbols.namesake
math.AG
Mathematics::Algebraic Geometry
TRACE FORMULA
Mathematics::K-Theory and Homology
0103 physical sciences
FOS: Mathematics
Calabi–Yau manifold
STABLE REDUCTION
RIGID VARIETIES
ABELIAN-VARIETIES
0101 mathematics
Algebraic Geometry (math.AG)
Mathematics::Symplectic Geometry
Mathematics
Conjecture
Science & Technology
010102 general mathematics
ARCHIMEDEAN ANALYTIC SPACES
TAME RAMIFICATION
K3 SURFACES
Riemann zeta function
Monodromy
Physical Sciences
symbols
Equivariant map
010307 mathematical physics
Mirror symmetry
SYZ conjecture
MAXIMAL ORDER
Popis: We study motivic zeta functions of degenerating families of Calabi-Yau varieties. Our main result says that they satisfy an analog of Igusa's monodromy conjecture if the family has a so-called Galois-equivariant Kulikov model; we provide several classes of examples where this condition is verified. We also establish a close relation between the zeta function and the skeleton that appeared in Kontsevich and Soibelman's non-archimedean interpretation of the SYZ conjecture in mirror symmetry.
Comment: New result on existence of Kulikov models for abelian varieties added in section 5.1
Databáze: OpenAIRE