Note on the number of divisors of reducible quadratic polynomials

Autor: Łukasz Pańkowski, Adrian W. Dudek, Victor Scharaschkin
Rok vydání: 2018
Předmět:
ISSN: 0004-9727
DOI: 10.48550/arxiv.1806.01404
Popis: Lapkova [‘On the average number of divisors of reducible quadratic polynomials’, J. Number Theory 180 (2017), 710–729] uses a Tauberian theorem to derive an asymptotic formula for the divisor sum $\sum _{n\leq x}d(n(n+v))$ where $v$ is a fixed integer and $d(n)$ denotes the number of divisors of $n$. We reprove this result with additional terms in the asymptotic formula, by investigating the relationship between this divisor sum and the well-known sum $\sum _{n\leq x}d(n)d(n+v)$.
Databáze: OpenAIRE