Spoof Plasmonic Metasurfaces with Catenary Dispersion for Two-Dimensional Wide-Angle Focusing and Imaging

Autor: Xiong Li, Yijia Huang, Xiaoliang Ma, Mingbo Pu, Yinghui Guo, Zuojun Zhang, Xiangang Luo, Mingfeng Xu
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: iScience
iScience, Vol 21, Iss, Pp 145-156 (2019)
ISSN: 2589-0042
Popis: Summary Although tremendous efforts have been devoted to investigating the analogy between the surface plasmon polariton and its spoof counterparts, it remains elusive that a single thin spoof plasmonic metalens realizes wide-angle focusing and wide field-of-view (FOV) imaging. Here, we propose a spoof plasmonic metasurface that can impart arbitrary phase with high transmittance, which comprises two-dimensional (2D) gradient spoof-insulator-spoof waveguides. With the developed catenary field and dispersion theory, their intrinsic physics is theoretically analyzed. As a proof of concept, a spoof plasmonic metalens with a thickness of 0.15λ has been elaborately designed and experimentally demonstrated for wide-angle (∼170°) focusing and wide FOV (∼40°) imaging. To the best of our knowledge, it is the first experimental demonstration of wide FOV imaging of a 2D object with single thin and planar metalens in the microwave regime. The proposed method offers a promising solution to compact cameras, integrated imaging, and detection systems.
Graphical Abstract
Highlights • Thin spoof metalens has been developed • A satisfactory qualitative description through catenary dispersion theory • Wide-angle microwave focusing (170°) and wide FOV (40°) imaging of 2D objects
Optical Imaging; Electromagnetic Waves; Surface
Databáze: OpenAIRE