Monophosphoryl lipid A pretreatment suppresses sepsis- and LPS-induced proinflammatory cytokine production in the medullary thick ascending limb
Autor: | Esther Tamayo, Bruns A. Watts, David W. Good, Edward R. Sherwood |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
MAPK/ERK pathway
Lipopolysaccharides Male Lipopolysaccharide Physiology Monophosphoryl Lipid A Pharmacology Proinflammatory cytokine Sepsis chemistry.chemical_compound Mice Medicine Animals Mice Knockout Kidney Kidney Medulla business.industry TOLLIP medicine.disease medicine.anatomical_structure Lipid A chemistry Myeloid Differentiation Factor 88 Loop of Henle Cytokines Tumor necrosis factor alpha business Research Article Signal Transduction |
Zdroj: | Am J Physiol Renal Physiol |
Popis: | Sepsis is the leading cause of acute kidney injury in critically ill patients. Tumor necrosis factor-α (TNF-α) has been implicated in the pathogenesis of septic kidney injury; however, the sites and mechanisms of renal TNF-α production during sepsis remain to be defined. In the present study, we showed that TNF-α expression is increased in medullary thick ascending limbs (MTALs) of mice with sepsis induced by cecal ligation and puncture. Treatment with lipopolysaccharide (LPS) for 3 h in vitro also increased MTAL TNF-α production. Sepsis and LPS increased MTAL TNF-α expression through activation of the myeloid differentiation factor 88 (MyD88)-IL-1 receptor-associated kinase 1-ERK signaling pathway. Pretreatment with monophosphoryl lipid A (MPLA), a nontoxic immunomodulator that protects against bacterial infection, eliminated the sepsis- and LPS-induced increases in MTAL TNF-α production. The suppressive effect of MPLA on TNF-α was mediated through activation of a phosphatidylinositol 3-kinase-dependent pathway that inhibits MyD88-dependent ERK activation. This likely involves MPLA-phosphatidylinositol 3-kinase-mediated induction of Tollip, which negatively regulates the MyD88-ERK pathway by inhibiting activation of IL-1 receptor-associated kinase 1. These regulatory mechanisms are similar to those previously shown to mediate the effect of MPLA to prevent sepsis-induced inhibition of MTAL [Formula: see text] absorption. These results identify the MTAL as a site of local TNF-α production in the kidney during sepsis and identify molecular mechanisms that can be targeted to attenuate renal TNF-α expression. The ability of MPLA pretreatment to suppress MyD88-dependent ERK signaling in the MTAL during sepsis has the dual beneficial effects of protecting tubule transport functions and attenuating harmful proinflammatory responses. |
Databáze: | OpenAIRE |
Externí odkaz: |