The van den Berg–Kesten–Reimer operator and inequality for infinite spaces
Autor: | Richard Arratia, Skip Garibaldi, Alfred W. Hales |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Statistics and Probability
Inequality projective set media_common.quotation_subject Probability (math.PR) 010102 general mathematics van den Berg–Kesten–Reimer Extension (predicate logic) 01 natural sciences Algebra 010104 statistics & probability BKR inequality Operator (computer programming) Product (mathematics) FOS: Mathematics 60E15 0101 mathematics Mathematics - Probability Descriptive set theory Mathematics media_common |
Zdroj: | Bernoulli 24, no. 1 (2018), 433-448 |
Popis: | We remove the hypothesis "$S$ is finite" from the BKR inequality for product measures on $S^d$, which raises some issues related to descriptive set theory. We also discuss the extension of the BKR operator and inequality, from 2 events to 2 or more events, and we remove, in one sense, the hypothesis that $d$ be finite. 15 pages |
Databáze: | OpenAIRE |
Externí odkaz: |