Geographic Knowledge Discovery in Multiple Spatial Databases

Autor: Tahar Mehenni
Rok vydání: 2017
Předmět:
DOI: 10.4018/978-1-5225-0937-0.ch013
Popis: Voluminous geographic data have been, and continue to be, collected from various Geographic Information Systems (GIS) applications such as Global Positioning Systems (GPS) and high-resolution remote sensing. For these applications, huge amount of data is maintained in multiple disparate databases and different in spatial data type, file formats, data schema, access mechanism, etc. Spatial data mining and knowledge discovery has emerged as an active research field that focuses on the development of theory, methodology, and practice for the extraction of useful information and knowledge from massive and complex spatial databases. This chapter highlights recent theoretical and applied research in geographic knowledge discovery and spatial data mining in a distributed environment where spatial data are dispersed in multiple sites. The author will present in this chapter, an overall picture of how spatial multi-database mining is achieved through several common spatial data-mining tasks, including spatial cluster analysis, spatial association rule and spatial classification.
Databáze: OpenAIRE