Density of potentially crystalline representations of fixed weight
Autor: | Benjamin Schraen, Eugen Hellmann |
---|---|
Přispěvatelé: | Mathematisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ANR-11-BS01-0005,ThéHopaD,Théorie de Hodge p-adique et développements(2011) |
Rok vydání: | 2016 |
Předmět: |
Pure mathematics
Deformation ring Zariski topology Algebra and Number Theory Mathematics - Number Theory Absolutely irreducible 010102 general mathematics Diagonalizable matrix Absolute Galois group 16. Peace & justice 01 natural sciences [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] Finite field p-adic Hodge theory 0103 physical sciences FOS: Mathematics Number Theory (math.NT) 010307 mathematical physics [MATH]Mathematics [math] Representation Theory (math.RT) 0101 mathematics Mathematics - Representation Theory Mathematics Vector space |
Zdroj: | Compositio Mathematica Compositio Mathematica, Foundation Compositio Mathematica, 2016, 152 (8), pp.1609-1647. ⟨10.1112/S0010437X16007363⟩ |
ISSN: | 1570-5846 0010-437X |
DOI: | 10.1112/s0010437x16007363 |
Popis: | Let K be a finite extension of Qp. We fix a continuous absolutely irreducible representation of the absolute Galois group of K over a finite dimensional vector space with coefficient in a finite field of characteristic p and consider its universal deformation ring R. If we fix a regular set of Hodge-Tate weights k, we prove, under some hypothesis, that the closed points of Spec(R[1/p]) corresponding to potentially crystalline representations of fixed Hodge-Tate weights k are dense in Spec(R[1/p]) for the Zariski topology. Comment: We fixed a gap in the proof of previous Cor 3.7, now Theorem 4.11, and fixed some sign errors |
Databáze: | OpenAIRE |
Externí odkaz: |