Density of potentially crystalline representations of fixed weight

Autor: Benjamin Schraen, Eugen Hellmann
Přispěvatelé: Mathematisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ANR-11-BS01-0005,ThéHopaD,Théorie de Hodge p-adique et développements(2011)
Rok vydání: 2016
Předmět:
Zdroj: Compositio Mathematica
Compositio Mathematica, Foundation Compositio Mathematica, 2016, 152 (8), pp.1609-1647. ⟨10.1112/S0010437X16007363⟩
ISSN: 1570-5846
0010-437X
DOI: 10.1112/s0010437x16007363
Popis: Let K be a finite extension of Qp. We fix a continuous absolutely irreducible representation of the absolute Galois group of K over a finite dimensional vector space with coefficient in a finite field of characteristic p and consider its universal deformation ring R. If we fix a regular set of Hodge-Tate weights k, we prove, under some hypothesis, that the closed points of Spec(R[1/p]) corresponding to potentially crystalline representations of fixed Hodge-Tate weights k are dense in Spec(R[1/p]) for the Zariski topology.
Comment: We fixed a gap in the proof of previous Cor 3.7, now Theorem 4.11, and fixed some sign errors
Databáze: OpenAIRE