Analytical Solution for Multi-Energy Groups of Neutron Diffusion Equations by a Residual Power Series Method
Autor: | Ahmad El-Ajou, Mazen Nairat, Mohammed Shqair |
---|---|
Rok vydání: | 2019 |
Předmět: |
Power series
Diffusion equation General Mathematics 02 engineering and technology Residual 01 natural sciences 010305 fluids & plasmas law.invention radial flux law 0103 physical sciences 0202 electrical engineering electronic engineering information engineering Computer Science (miscellaneous) Neutron Boundary value problem Diffusion (business) Engineering (miscellaneous) Physics diffusion equation multi-group lcsh:Mathematics Mechanics Nuclear reactor lcsh:QA1-939 residual power series Criticality 020201 artificial intelligence & image processing |
Zdroj: | Mathematics, Vol 7, Iss 7, p 633 (2019) Mathematics Volume 7 Issue 7 |
ISSN: | 2227-7390 |
DOI: | 10.3390/math7070633 |
Popis: | In this paper, a multi-energy groups of a neutron diffusion equations system is analytically solved by a residual power series method. The solution is generalized to consider three different geometries: slab, cylinder and sphere. Diffusion of two and four energy groups of neutrons is specifically analyzed through numerical calculation at certain boundary conditions. This study revels sufficient analytical description for radial flux distribution of multi-energy groups of neutron diffusion theory as well as determination of each nuclear reactor dimension in criticality case. The generated results are compatible with other different methods data. The generated results are practically efficient for neutron reactors dimension. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |