Enhanced power graphs of groups are weakly perfect
Autor: | Cameron, Peter J., Phan, Veronica |
---|---|
Přispěvatelé: | University of St Andrews. Pure Mathematics, University of St Andrews. Centre for Interdisciplinary Research in Computational Algebra |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Popis: | A graph is weakly perfect if its clique number and chromatic number are equal. We show that the enhanced power graph of a finite group G is weakly perfect: its clique number and chromatic number are equal to the maximum order of an element of G. The proof requires a combinatorial lemma. We give some remarks about related graphs. Publisher PDF |
Databáze: | OpenAIRE |
Externí odkaz: |