Popis: |
The effect of a variety of ions and other solutes on the accumulation of the beta-amino acid, taurine, was examined in rat renal brush-border membrane vesicles. Initial taurine uptake (15 and 30 s) is sodium-dependent with a typical overshoot. This Na+ effect was confirmed by exchange diffusion and gramicidin inhibition of taurine uptake. External K+ or Li+ do not increase taurine accumulation more than Na+-free mannitol, except that the combination of external K+ and Na+ in the presence of nigericin enhances uptake. Of all anions tested, including more permeant (SCN- and NO3-) or less permeant (SO4(2-)), chloride supported taurine accumulation to a significantly greater degree. Preloading vesicles with choline chloride reduced taurine uptake, suggesting that external Cl- stimulates uptake. Since this choline effect could be related to volume change, due to the slow diffusion of choline into vesicles, brush-border membrane vesicles were pre-incubated with LiCl, LiNO3 and LiSO4. Internal LiCl, regardless of the final Na+ anion mixture, reduced initial rate (15 and 60 s) and peak (360 s) taurine uptake. Internal LiNO3 or LiSO4 with external NaCl resulted in similar or higher values of uptake at 15, 60 and 360 s, indicating a role for external Cl- in taurine uptake in addition to Na+ effect. Although uptake by vesicles is greatest at pH 8.0 and inhibited at acidic pH values (pH less than 7.0), an externally directed H+ gradient does not influence uptake. Similarly, amiloride, an inhibitor of the Na+/H+ antiporter, had no influence on taurine accumulation over a wide variety of concentrations or at low Na+ concentrations. Taurine uptake is blocked only by other beta-amino acids and in a competitive fashion. D-Glucose and p-aminohippurate at high concentrations (greater than 10(-3) M) reduce taurine uptake, possibly by competing for sodium ions, although gramicidin added in the presence of D-glucose inhibits taurine uptake even further. These studies more clearly define the nature of the renal beta-amino acid transport system in brush-border vesicles and indicate a role for external Cl- in this uptake system. |