Proper actions on $\ell^p$ spaces for relatively hyperbolic groups
Autor: | François Dahmani, Indira Chatterji |
---|---|
Přispěvatelé: | Laboratoire Jean Alexandre Dieudonné (JAD), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Institut Fourier (IF ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Mathematics::Functional Analysis Group (mathematics) 010102 general mathematics Regular polygon Banach space Ocean Engineering Geometric Topology (math.GT) Group Theory (math.GR) 01 natural sciences Action (physics) [MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] Mathematics - Geometric Topology 0103 physical sciences FOS: Mathematics 010307 mathematical physics Affine transformation 0101 mathematics [MATH]Mathematics [math] Mathematics - Group Theory Mathematics |
Popis: | We show that for any group $G$ that is hyperbolic relative to subgroups that admit a proper affine isometric action on a uniformly convex Banach space, then $G$ acts properly on a uniformly convex Banach space as well. 28 pages, revised |
Databáze: | OpenAIRE |
Externí odkaz: |