Thermoelastic-plastic flow equations in general coordinates
Autor: | Dean L. Preston, Daniel N. Blaschke |
---|---|
Rok vydání: | 2018 |
Předmět: |
Physics
Curvilinear coordinates Conical coordinates Mathematical analysis Fluid Dynamics (physics.flu-dyn) FOS: Physical sciences Physics - Fluid Dynamics 02 engineering and technology General Chemistry Condensed Matter - Soft Condensed Matter Action-angle coordinates 021001 nanoscience & nanotechnology Condensed Matter Physics Parabolic coordinates Oblate spheroidal coordinates 020303 mechanical engineering & transports Generalized coordinates 0203 mechanical engineering Orthogonal coordinates Soft Condensed Matter (cond-mat.soft) General Materials Science 0210 nano-technology Bipolar coordinates |
Zdroj: | Journal of Physics and Chemistry of Solids. 119:288-295 |
ISSN: | 0022-3697 |
DOI: | 10.1016/j.jpcs.2018.03.026 |
Popis: | The equations governing the thermoelastic-plastic flow of isotropic solids in the Prandtl-Reuss and small anisotropy approximations in Cartesian coordinates are generalized to arbitrary coordinate systems. In applications the choice of coordinates is dictated by the symmetry of the solid flow. The generally invariant equations are evaluated in spherical, cylindrical (including uniaxial), and both prolate and oblate spheroidal coordinates. Comment: 19 pages; v2: minor revision, to appear in J. Phys. Chem. Solids |
Databáze: | OpenAIRE |
Externí odkaz: |