A Riesz Representation Theorem for the Space of Henstock Integrable Vector-Valued Functions
Autor: | Daniela Rodríguez Tzompantzi, Khaing Khaing Aye, Juan Alberto Escamilla Reyna, J. Oliveros, Tomás Pérez Becerra |
---|---|
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Bilinear operator Article Subject Representation theorem Integrable system Riesz representation theorem lcsh:Mathematics 010102 general mathematics Mathematics::Classical Analysis and ODEs lcsh:QA1-939 Space (mathematics) 01 natural sciences 010101 applied mathematics Bounded function Integration by parts 0101 mathematics Vector-valued function Analysis Mathematics |
Zdroj: | Journal of Function Spaces, Vol 2018 (2018) |
ISSN: | 2314-8888 2314-8896 |
DOI: | 10.1155/2018/8169565 |
Popis: | Using a bounded bilinear operator, we define the Henstock-Stieltjes integral for vector-valued functions; we prove some integration by parts theorems for Henstock integral and a Riesz-type theorem which provides an alternative proof of the representation theorem for real functions proved by Alexiewicz. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |