Limiting shape of the Depth First Search tree in an Erd\H{o}s-R\'enyi graph

Autor: Nathanaël Enriquez, Laurent Ménard, Gabriel Faraud
Přispěvatelé: Modélisation aléatoire de Paris X (MODAL'X), Université Paris Nanterre (UPN), ANR-14-CE25-0014,GRAAL,GRaphes et Arbres ALéatoires(2014), ANR-10-LABX-0023,UnivEarthS,Earth - Planets - Universe: observation, modeling, transfer(2010), Ménard, Laurent, Appel à projets générique - GRaphes et Arbres ALéatoires - - GRAAL2014 - ANR-14-CE25-0014 - Appel à projets générique - VALID, Earth - Planets - Universe: observation, modeling, transfer - - UnivEarthS2010 - ANR-10-LABX-0023 - LABX - VALID, Marches aléatoires en interaction - - MALIN2016 - ANR-16-CE93-0003 - AAPG2016 - VALID, ANR-16-CE93-0003,MALIN,Marches aléatoires en interaction(2016)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Random Structures and Algorithms
Random Structures and Algorithms, Wiley, 2020, 56 (2)
Random Structures and Algorithms, 2020, 56 (2)
ISSN: 1042-9832
1098-2418
Popis: We show that the profile of the tree constructed by the Depth First Search Algorithm in the giant component of an Erd\H{o}s-R\'enyi graph with $N$ vertices and connection probability $c/N$ converges to an explicit deterministic shape. This makes it possible to exhibit a long non-intersecting path of length $\left( \rho_c - \frac{\mathrm{Li}_2(\rho_c)}{c} \right) \times N$, where $\rho_c$ is the density of the giant component.
Comment: 16 pages, 3 figures
Databáze: OpenAIRE