On the maximum bias functions of MM-estimates and constrained M-estimates of regression

Autor: José R. Berrendero, David E. Tyler, Beatriz V. M. Mendes
Jazyk: angličtina
Rok vydání: 2007
Předmět:
Zdroj: Ann. Statist. 35, no. 1 (2007), 13-40
Biblos-e Archivo. Repositorio Institucional de la UAM
instname
Popis: We derive the maximum bias functions of the MM-estimates and the constrained M-estimates or CM-estimates of regression and compare them to the maximum bias functions of the S-estimates and the $\tau$-estimates of regression. In these comparisons, the CM-estimates tend to exhibit the most favorable bias-robustness properties. Also, under the Gaussian model, it is shown how one can construct a CM-estimate which has a smaller maximum bias function than a given S-estimate, that is, the resulting CM-estimate dominates the S-estimate in terms of maxbias and, at the same time, is considerably more efficient.
Comment: Published at http://dx.doi.org/10.1214/009053606000000975 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org)
Databáze: OpenAIRE